Name:	
Date: _	

Physics Focused Closed Reading

Using the words in the bank below, fill in the blanks in the text with the appropriate word. You can use dictionaries and other resources to help you.

Word Bank

acceleration	airfoil	fuselage	thrust
aerodynamics	composites	Newton's third law	working fluid
aeronautics	drag	propulsion	
	is the stud	ly of the science of flight. T	his science is used when
engineers are design	ning an airplane or othe	r flying machine. To design	a plane, engineers must
understand four eler	ments which are explain	ned below.	
	is the stud	ly of forces and the resulting	g motion of objects
through the air. In si	impler terms, it is the w	vay air moves around things	. This affects the motion
of everything from a	a large jet to a model ro	ocket to a kite to a pitcher's	curveball. By studying the
way air flows aroun	d a plane, engineers car	n define the shape of the pla	nne. The wings, the tail,
and the main body of	or	of the plane all affect the	he way the air will move
around the plane.			
The second	element is	, which means	to push forward or drive
an object forward.	When talking specifical	lly about the flight of an air	plane, it is the study of
how to design an en	gine that will provide t	he	that is needed for a plane
to take off and fly th	nrough the air. On airp	lanes, this is usually genera	ted through some
application of	, wl	hich says for every action, t	here is an equal and
opposite reaction. W	hen talking about plan	es, a gas, or	, is accelerated
by the engine, and the	he reaction to this	produc	ees a force on the engine

Name:	
Date: _	

In designing the structure of the airplane, the most important factor is the shape of an airplane's wings because that is what makes it able to fly. Airplanes' wings are curved on top and flatter on the bottom. That shape is called a/an _______, and it makes air flow over the top faster than under the bottom. So, less air pressure is on top of the wing. This condition makes the wing, and the airplane it's attached to, move up. Using curves to change air pressure is a trick used on many aircraft. Helicopter rotor blades use this trick. Lift for kites also comes from a curved shape. Even sailboats use this concept. A boat's sail is like a wing. That's what makes the sailboat move.

When designing the structure, engineers also have to account for

_______. This is a force that tries to slow something down. It makes it hard for an object to move. It is harder to walk or run through water than through air. That is because water causes more drag than air. The shape of an object also changes the amount of this force.

Most round surfaces have less of this force than flat ones. Narrow surfaces usually have less of this force than wide ones. The more air that hits a surface, the more of this force it makes.

The final element is stability and control. This is the study of how to control the speed, direction, altitude and other conditions that affect how a plane flies. The engineers' design the controls that are needed in order to fly and instruments are provided for the pilot in the cockpit of the plane. The pilot uses these instruments to control the stability of the plane during flight.